Concave
Concave
¶
Bases: Term
Edge Term that represents the concave membership function.
Equation
\(\mu(x) = \begin{cases} h \dfrac{e - i} {2e - i - x} & \mbox{if } i \leq e \wedge x < e \mbox{ (increasing concave)} \cr h \dfrac{i - e} {-2e + i + x} & \mbox{if } i > e \wedge x > e \mbox{ (decreasing concave)} \cr h & \mbox{otherwise} \cr \end{cases}\)
where
- \(h\): height of the Term
- \(i\): inflection of the Concave
- \(e\): end of the Concave
Attributes¶
Functions¶
__init__
¶
configure
¶
configure(parameters: str) -> None
Configure the term with the parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameters |
str
|
|
required |
membership
¶
Compute the membership function value of \(x\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Scalar
|
scalar |
required |
Returns:
Type | Description |
---|---|
Scalar
|
\(\mu(x) = \begin{cases} h \dfrac{e - i} {2e - i - x} & \mbox{if } i \leq e \wedge x < e \mbox{ (increasing concave)} \cr h \dfrac{i - e} {-2e + i + x} & \mbox{if } i > e \wedge x > e \mbox{ (decreasing concave)} \cr h & \mbox{otherwise} \cr \end{cases}\) |
tsukamoto
¶
Compute the tsukamoto value of the monotonic term for activation degree \(y\).
Equation
\(y = h \dfrac{e - i} {2e - i - x}\)
\(x = h \dfrac{e-i}{y} + 2e -i\)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
Scalar
|
activation degree |
required |
Returns:
Type | Description |
---|---|
Scalar
|
\(x = h \dfrac{e-i}{y} + 2e -i\) |